" AD-A151 488

UNCLRSSIFIED

SOFTHARE RND— ITS RELATIONSHIP TO METHODSCU) STANFORD 1/4 -
UNIV CR DEPT OF OPERATIONS RESERRCH P E GILL ET AL.
NOV 84 SOL-84-10 AR0-21592. 4-MA NBBB!A—?S—C—?;_S?

6 9/2 NL
. -

Fuuep

rv'Tﬁ.'..

e W

...-

»
4

, N

d

]

P SO AL - SN el g o S G L AN i A S ST

““ 10 B 2
= = [
=5

L b R
= &

Jizs fhis pee

II

MICROCOPY RESOLUTION TEST CHART

NATIONAL Bl piep ALt STANDAWDS [A

N " TR Ty T
l@!

‘rf v~ — v v . Lt e
) . T
’ ! ' : ” ’ : '

CRE . .o Lo T

.'j’.v, Paary

Ehaired AP A AR S TP
-

il
¢

[REPRODUCED AT GOVERNMENT FXPENSE

Systems

Optimization
l_aboratory

&
- SOFTWARE AND ITS RELATIONSHIP TO METHODS'
O
e by
< Philip E. G1ill, Walter Murray,
| Michael A. Saunders and Margaret H. Wright
< TECHNICAL REPORT SOL 84-10
November 1984
D>
Q.
(-)
)
L
d
.
—
[e |

B o= ey d

*L\ 11592 4-ma

gl - 7
@

/
/}
(o]

;1;1':18 :glc.jtxment has been approved |
di"tp' IC release qnd sale; j
| dis ribution jg unlimited, s

Department of Operations Research
Stanford University
Stanford, CA 94305

R r———

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

SOFTWARE AND ITS RELATIONSHIP TO METHODS'
by

Philip E. Gill, Walter Murray,
Michael A. Saunders and Margaret H. Wright

TECHNICAL REPORT SOL 84-10

November 1984

Research and rceproduction of this report were partially supported by
National Science Foundation Grants MCS-7926009 and ECS-8312142; Depart-
ment of Energy Contract DE-AM03-76SF00326, PA# DE-AT03-76ER72018; Office
of Naval Research Contract N00014-75-C-0267; and Army Research Office
Contract DAAG29-84-K-0156.

Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part Is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution {s unlimited.

TPresented as an invited paper at the SIAM Conference on Numerical
Optimization, June 12-14, 1984, Boulder, Colorado. 3

LI
¥

hCR A T S it S gt i dend v e

ol

. Ty

RRRRRY. TRRAPtnn

L JWN

Fdaiev it Shve M Jhast Jhast Sabn tulati Sask }

SOFTWARE AND ITS RELATIONSHIP TO METHODS !

by

Philip E. Gill, Walter Murray,
Michael A. Saunders and Margaret H. Wright

ABSTRACT

One view of numerical software is that it is siinply a computer implementation of a known
method. Tnplicit in this view is the assumption that the flow of information is in one direction
only. However, developments in methods and software are intimately related, and ncither is
complete if considered in isolation. In this paper. we illustrate how the developient of numnerical

software has influenced our rescarch in optimization methods.

s Tul o!
| e,
‘Y5
H LN
& . : T~ !
s | N S © :
JS T Cod £ o o=
- i 4]
e fe 3~ |
»oE Do L O
D el T Co & U f
- . - :; - | S ‘
)r, .\ s € B Do e W J
<\ o e H T PO e meelo
Eonie pa—
vy ey ; [T . -
L4 -
v (e =) SRS
e s -
N an e R

This research was supported by the VLS Department of Energy Contract DE-AMO03-7651700320,
PA No. DE-ATOS-7GER72018:. National Science Foundation Grants MCS-7926000 and ECS-
8312112: the Oflice of Naval Rescarch Contract NOOOLE-75-C-0267; and the U.S. Army Rescarch

Olice Contract DAAG29-84-K-0156.

Akl

2 14,

P Presented as an invited paper at the SIAM Conference on Numerical Optimization, June |

1984, Boulder, Colorado.

- - " e
e e e

vy vz

| AN g

LA L AR A At Sabb e Bt A gn g S S et Mol Aol Sk S okt M0 44 S8 UR M A e a0 e nen B A b w as v

1. Introduction

It is almost a truism that an optimization method cannot be treated as practical unless an imple-
mentation has been produced and a significant amount of computation performed. Thus, research
on optimization methods necessarily overlaps heavily with the development of software. Since
the advent of serious work on mumerical software, much has been written about the complexi-
ties that arise when transforming any mathematical algorithm into an implementation (see, e.g.,
Cody, 1974; Gill et al.. 1979: Cowell, 1983). Although most workers in optimization are aware
of such issues. the effect of implementation on methods is much less widely understood. In fact,
the relationship between methods and software is sometimes described simply by defining an
implementation as a concrete realization of a theoretical algorithm.

In our view, this statement does not include the erucial influence that implementation may
have on theoretical algorithms. Tmiplementation must always be considered by the algorithm
designer in the sense that the steps of a theoretical method should be implementable. However,
our experience suggests that implementation has a much more substantive effect on methods. This
paper accordingly develops the theme that software ereates new methods, and that a method can
be produced in its most effective form only in conjunction with a careful inplementation. In order
to avoid vague generalities, our own experiences with specific issues will be cited to illustrate the
sometimes subtle interconnections that can occur. Thus, we shall describe the evolution of certain
methods as a result of implementation.

Initialization and connnunication are two critical areas in which the process of implementa-
tion influences an algorithm. In deseribing the computation associated with an algorithm, the
basic iteration is usually the main concern. In implementing a method, however, initialization
is crucial not only the computation that must be performed to initiate the method, but also
the information that is communicated- to and from the algorithm. In our experience, the na-
ture, cost aud diftienlty of initialization procedures may be obscured by the purely mathematical
deseription of an algorithim. Purthermore, the representation of the information needed by an
algorithm c.g.. o particular matrix factorization is often left undefined until required by an
nuplementation. This latter tendeney sometimes leads to a surprisingly optimistic belief in “black
box™ software: we shall deseribe several examples in which the use of “off-the-shelf™ codes in a
complex adgorithin introduces sub:rantial inefliciencies because of poor communication between
software modules.

A careful implementation also illumimates questions of detail that are typically ignored in a
purely theoretical setting. In the analysis of algorithms, a “good™ proof shonld have the widest
possible application and generality. In order to facilitale the construction of such proofs, methods
are often deseribed with a comparable level of abstraction. For example, theoretical deseriptions
of active-set nonlincar programming methods typically treat linear and nonlinear constraints in
a uniform way. Consequently, it i not always appreciaded that substantial improvements in
perlormance can resalt when algorithms explojt the differemt propertios of lincar and nonlinear
constramts. The scope for increased elliciency is not restricted to savings such as avoiding the
recompntation of gradients for lincar constraints. Linear constraints have the important property
that, from any non-optimal feasible point. directions can be generated along which there must
exist intervals of feasible points. This property allows the development of methods that always
retain feasibility with respeet to the linear constraints. For such methods, the path to the solution
and the nmber of iterations tend to differ completely from those of methods that ignore linearity.
The many non-obvions effects of separate treatment of lincar and nonlinear constraints will be a
reenrrent topic in this paper.

i N A r—"
|

r e L N N s T N s T T T T N T T T T Ty T T T TR T T e TR R T 'f'i'v-ﬁ'i-?—]

:j_' 2. Background on quadratic and nonlinear programming
1 2.1. Quadratic programming. Many of our examples will be drawn from a relatively simple
[optimization problem - quadratic programming (QP):

minimize ¢Tz + %zTHx

. RN
. . I
subject to € < { } < u,
h Az
- where H is symmetric. The constraints involving the matrix A will be called the general con-
a straints; the remaining constraints will be called bounds. An equality constraint corresponds to

setting € = u,. Similarly, a special “infinite™ value for €; or u; is used to indicate the absence of
one of the bounds.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we
shall always consider a typical iteration and avoid reference to the index of the iteration.) Each
new iterate # is defined by

Z=1u+ap, (1)

where the step length « is a non-negative scalar. and p is called the scarch direction.

Throughout this paper, we shall consider only a particular active-set feasible-point method
for quadratic programming (sce Gill et al.. 1984a). An important feature of the method is that,
once any iterate is feasible, all subsequent iterates remain feasible.

The essence of the method is the definition of a working set of constraints (general and
bound) that are satistied exactly at . The scarch direction is constructed so that the constraints
in the working set remain unaltered for any value of the step length. For a bound constraint in
the working set, this property is achieved by setting the corresponding component of the search
direction to zero. Thus, the associated variable is fixed, and specification of the working set ?
induces a partition of z into fixed and free variables. During a given iteration, the fixed variables
are offectively removed from the problem: siuce the relevant components of the scarch direction
are zero, the cohnnns of A corresponding to fixed variables may be ignored.

Let m denote the nmmber of general constraints in the working set and let n,,, denote the
munber of free variables. Let € denote the m x ny, submatrix of general constraints in the
working set corresponding to the free variables. and let p denote the search direetion with respect
to the free variables only. The general constraints in the working set. will be unaltered by any
move along p if

. e
.
bt st R et o’ s> o RO heh b S ot VL EERA . 4 a oA s A MR AL 2 U S Alle . EERE e_a

ettt AN 0

Cp=0. (2)

In order to compute p, the T'Q factorization of C is used:

CQ=(0 T), (3)

where T ix an X e reverse-triangtlar matrix (e b, = 0if 1+ 5 < m), and the non-singular
inadrix €Q ix the produet of cither orthogonal or stabilized elementary transformations (see Gill ot

AR e B i n R

@ Al 1984¢). In this paper. we consider only the case where @@ is orthogonal. If T is non-singular

. and the colnmns of Q are partitioned so that :

'A where Yois n, x m, then the (ny, - m) columns of Z form a basis for the null space of €. Thus, .
' ° p will satisfy (2) only if

’E p=2p, (5) .
¢ 2

e

N\ e e P - %;‘._-:-_;:. = L e .‘,

for some vector p,.

The delinition of p, in (5) depends on whether the current point is feasible. If not, p, is
taken as —ZTq, where ¢ is the gradient of the current sum of infeasibilities with respect to the
free variables. Otherwise, p, is the solution of

R;,FRsz =27 ’ (6)
where I, is upper triangular and ¢ is the gradient of the quadratic objective function with respect
to the free variables. The Cholesky factor R, is closely related to the projection of the Hessian
matrix (with respect to the free variables) into the subspace defined by Z.

At cach iteration, the working set is changed by adding or deleting constraints. Each change
in the working set leads to a simple change to € if the status of a general constraint changes,
a row of (' is altered; if a bound constraint enters or leaves the working set, a column of C
changes. The method recurs explicit representations of T, Q, R, and ¢, (the vector Q7q, where
q (= ¢ + Hx) is the gradient of the quadratic objective function).

2.2. Nenlinear programming. The sccond problem to be discussed is the nonlinear program-
nung problem:
NP minimize F(z)
R

T
subject to € < Az < wu,
c(z)
where F(z) (the objective function) is a smooth nonlincar function, A4, is a constant matrix of
linear constraints, and ¢(z) is a vector of smooth nonlincar constraint functions. Note that simple
bounds and lincar constraints are represented separately from nonlincar constraints.

It is widely considered today that sequential quadratic progranuning (SQP) methods are
the most effective general techniques for treating constraint nonlinearities. The idea of solving
nonlinear programs by a sequence of quadratic programming subproblems was first suggested by
Wilson (1963). SQP methods were popularized mainly by Biggs (1972), Han (1976) and Powell
(1977). (A brief history of SQP methods and an extensive bibliography are given in Gill, Murray
and Wright. 1981, For a survey of recent. results and references. see Powell, 1983.)

The basie structure of an SQP method involves major and minor iterations. Associated with
cach major iteration are a search direction p. a set of nmltipliers g for the nonlinear constraints,
and i working set of nonlinear constraints (a prediction of the constraints that are satisficd exactly
at the solntion). In the methods cousidered in this paper, all of these quantities are computed
from a quadratic programnming subproblem. The vector p of (1) is the solution itself, p is the
Lagrange multiplier veetor from the QP subproblem, aud the “nonlincar™ working set is the Anal
active set of the subproblen. Sinee solving such a subproblem is itsell an iterative procedure, the
minor itevations of an SQP method are those of the QP method.

The QP subproblem is defined by aset of linecar constraints and a quadratic objective function,
Inmost SQY micthods, the linear constramts of the subproblem are lincarizidions of the original
constraints about the current point. In order to attain rapid convergence, the objective function
of the subproblen st approximate the Lagrangian mnction. Bach wajor iteration thns inclndes
a quadratic progriunming subproblem of the form

minimize gTp + %pTHp
P

_ p
subject to £ < Ap) < 1,

> A =

. R . LIS L - . N N -
& 0 s o 4 PUBIP RPN, VLIV W Uy W U W W W S ey P . as

et AP AL

. TON.

PR

A

I\ JTOURNBENG . TSR

P

RN U

o
v

N\

Al Bon 2t S d AN el b A Shd A d S s 9 A

where g is the gradient of F at z, the matrix H is an approximation to the Hessian of the
Lagrangian function, and A, is the Jacobian matrix of ¢(z) cvaluated at . Let € in NP be
partitioned into three sections - - €,. €, and £ corresponding to the bound, linear and
noulinecar constraints. The vector € is similarly partitioned, and is defined as

by=0,—x, b, =0 — A, x, and by =€y —c,
where ¢ is the vector of nonlinecar constraints evaluated at z. The vector 4 is defined in an
analogous fashion.

Having obtained p. the major iteration procceds by determining a steplength a in (1) that
produces a “suflicient deerease™ in some werit function (a combination of the objective and
constraint functions that measures progress toward the solution).

Because exact second derivatives may be unavailable in practice. most work on SQP methods
has concentrated on the case in which the matrix H in the subproblem is a positive-definite
quasi-Newton approximation to the Hessian of the Lagrangian function. (For a review of quasi-
Newton methods, see Dennis and Schnabel, 1983.) After £ has been obtained, the new Hessian
approximation is typically defined as a low-rank modification of the old, so that the Hessian
matrices of successive quadratic programming subproblems are related in a special way (see
Scetion 6). With the BIFGS update, for example. the new matrix H is given by

i=H-

1
H...T . T, 7
THe 8 H+ ythydlz (7)

where 8 = 7 -z (the change in x), and yg is the difference in gradients of the Lagrangian function,
ie., .
- = _ 2T T
ye = Ge — ge = (§ — ATN) ~ (9 — ATA),

where A and A are Lagrange nmltiplier estimates at the new and old points. In most SQP methods,
both A and A are set to g, the multipliers of the latest subproblem.

It should be clear from the above deseription that an SQI* method is inherently complex. Any
implementation of an SQP method must inclnde: (1) the solution of a quadratic programming
subproblem (with some provizion for the treatment of inconsistent constraints): (2) definition of
amerit function: and (3) speeification of the Hessian.

3. Finding an initial feasible point

As a brief example of how an algorithm deseription can be misleading with respeet to the efliciency
of the implementation, consider an SQI® mnethod in which a so-called two-phase (primal) quadratic
proeramming method is nsed to solve the subproblem. The two phases are: finding an initial
feasible point by aninimizing the sum ol jufeasibilities {(the feasibility phase), and minimizing
the quadratic objective function in the feasible region (the QI phase). When deseribing such
a method, it is convenient to state simply that an initial feasible point must be founrd by a
phase-1 procedure (thie present anthors have done so many times!). Unfortunately, this form
of deseription may be (wrongly) interpreted as implying that a “black box” phase-1 simplex
lincar programming procedure should be invoked before the QI phase. If so, serions inefliciency
conld result if several sitpiex iterations were required in order to find a feasible point (since a
vertex solution would need to be ereated): standard linear programming software is also highly
nnhikely to produce the factorizations needed to initiate the QP phase. Consequently, a two-phase

4

<
«
Lo - |

Ly R A S i " i Aathar uf - Pty o ame " RN Mt St et Sate et Sinth Suts Thatt At iien Bee Tl S R A NE -,—-,v-‘}

quadratic programming method might be considered as ineffective simply because of a lack of
detail in specifying the initialization procedure.

On the contrary, the proper implementation of a two-phase quadratic programiming method
~lionuld retlect the essential sameness of the linear algebraic computations associated with iterations
in both the feasibility and QP phases L particular, cach iteration involves an update of the 7°Q
foctorization of the working set. It is typical for the subproblems in later major iterations of an
SQP method to reach optimality in a single iteration because the optimal active set is available
before solving the subproblem. In this case, the phase-1 procedure merely perforins a feasibility
chieck that would be required in any case.

In our implementation. the computations in both phases are performed by exactly the same
modules. The two-phase nature of the algorithm is reflected by changing the function being
nianimzed from the sum of infeasibilities to the quadratic objective function. The feasibility phase
does not perform the standard simplex method (i.e., it does not find a vertex), and requires no
additional work in the later iterations of an SQP method.

4. Factorization of the working set

The quadratic programming method of Section 2.1 requires an explicit matrix @ in order to
pertorm updates to the working set. In this section, we consider the cvolution of a quadratic
programming method with respect to its computation of the initial Q.

As mentioned previonsly, the active set of cach subproblem in an SQP method eventually
hecomes the active set of the noulinear problem. Since the iterations in a QP method are directed
utitely toward finding the active set, it would appear that a good initial estimate of the active
<ot could permit later subproblemns to reach optimality in only one iteration.

Our first idea along these lines was to include a “warm start™ option in the QP method,
e to specify the desired initial working set as input to the feasibility phase (for details, sce
Gl et al. 1985a). Beyond adding this option, however, the original implementation retained in
carre part the philosophy that the eventual SQP method should utilize as much as possible an
“ofl-the-shell™ version of the ¢quadratic programnning method discussed in Section 2.1,

Computation of the TQ factornization associated with a speeified working set may be viewed
a~ updating an existing factorization ax new rows are added in the last position. Assume that
the TQ factorization (3) of €7 is available, and consider the matrix €, which is C angmented by

the row ¢, Then o 0 T
C'(J»:((.;,)()E'I;:(r t,,), (8)

S

ehere s and £ are the relevant partitions of QTe. Let @ denote a Honscholder matrix of the form
- 1
Q=1--uuT
J el

where the veetor o and sealar /1 are chosen to anmiliilate all but the last element of &, and {o leave
t unchanged. (For details of how these quantities are delined, see Stewart, 1973.) Then

. 0O o0 T
(30)

or

CcQ (0 T),

5

AN

) - - . . o .o _a PP PP WUy WISy AT S U AP UL A WA "SR ST W WP WA S S VIPAY U Y A

Lo e o

-y

PR a e

T ..

GRCE N3 VT S)

S

N R g T T T

where Q = Q(é.

In a gencral-purpose QP algorithm, the initial TQ factorization of C would probably be
computed by the so-called “standard™ procedure, which can be interpreted as a version of (8) and
(9) in which the rows of (" are added to the null matrix one by one. The initial @ matrix is taken as
the identity. and the initial T is the null watrix. While computing the factorization, the sequence
of Honscholder transformations is stored in compact form (i.c., Q is not stored explicitly); the
veetor ¢ TQ needed in (8) is obtained by applying the sequence of stored transforinations. Once the
mitial factorization has been completed, the necessary explicit matrix QQ is obtained by multiplying
the compact Honscholder transformations together in reverse order.

A shift in perspective oceurs when this computation is performed within an SQP method
applied to a problem that contains both lincar and nonlinear constraints. (We shall use the term
lincar row to denote a row of the working set associated with a linear constraint in the original
preblem. and similarly for nonlinear row.) Since the rows of A, are the same in cach subproblemn,
it =cems highly desirable to avoid refactorization of inear rows. We emphasize that by considering
this possitility. we have already deviated from seeking a general-purpose quadratic programming
code. which 1s unlikely to make distinctions between row types. Hence, to take advantage of the
presence of lincar coustraints, a more speciadized QP method must be devised.

Even if the QP method can distinguish among rows, it is still not straightforward to exploit
constraint linecaritics in computing the initial 7'Q factorization. In order for the same Houscholder
transformations to be used again. the order of the rows must remain unchanged. Iowever, the
order of the rows in the final € ix determined by the order in which constraints enter or leave the
working set during the iterations of the quadratic programming method. If the constraints of the
nonlinear problem are ordered so that the lincar constraints precede the nonlinear constraints, and
if constraints are always added to the initial working set in order. we can determine in the major
iteration how many rows of (¢ have not changed since the previons subproblen. Ideally, the part
of the TQ factorization corresponding to the unchanged linear rows need not be recomputed. In
particular. if the first m, rows of € are lincar, the implementation should be able to utilize the first
e, Househiolder transformations from the initial TQ factorization of the previous subproblemn.
Fventually, as the SQP iterates converge, the active set will not change between subproblems,
and all the Houscholder transformations corresponding to Jinear rows can be saved.

Unfortunately. this aim is extremely diflicnlt to achieve within an implementation that uscs
the standard procedure to obtain the itial TQ factorization. The explicit @ from the previous
subproblem does not allow reconstruction of the Houscholder transformations from which it was
compnted, Therefore, in order to avoid refactorizing the linear rows, the QI method would have
to save the compact transformations corresponding to the lincar constraints at the bheginning of
the mitial working set. Even then, the saved compact transformations would be of no use if just
one bonnd had changed status during the QP iterations. (The colunmn dimension of €7 changes
when the set of free variables is altered.)

Althongh thas analysis is discouraging, we persisted in trying to exploil constraint linearities
i the mitial TQ factorization becanse of the lacge nmmber of practicad problems with acsignificant
number of lincar constraints and bounds, The result was to change the definition of both the QP
and the SQP methods. Rather than attempt to define some way for the gnadeatic programming
method to distingnish amonyg row types, computation of the initial T'Q factorization was removed
from the QP method proper to the major iteration, which “naturally”™ has access to information
about which constraints are linear and nonhinear. A necessary consequence was that the quadratic
prograuntming method mnst inchide a0 hot start option. i which the input parameters of the
quadratic prograun include not only the specilication of a working set, but also its associated TQ

6

PRI] DR

i

ATl ORI S

1.

Sl LWL

oo

s oa'e ooaa L.

factorization.

In addition to this change in structure of the quadratic programming method, the procedure
for coputing the initial factorization was changed. In the updating method. the explicit matrix
() from the previous subproblem is taken as the initial matrix Q in (8). In contrast to the
stanndard procedure, where the initial @ is taken as the identity matrix. this means that each
new row st be transformed by a full orthogonal matrix rather than a sequence of Householder
transformations, and that cach Houscholder transforimation must be multiplied into @ after the
correspotding row has been transformed. The benefit from this procedire with respect to linear
rows of (7 ix that the final matrix Q from the previous subproblem automatically transforms the
mitial constant rows of €7 into reverse-triangular form (regardless of any changes that occurred
in the status of bound constraints). Thus. no work is required to obtain the first m, rows of T'.

This example of the shift in a method because of implementation is highly relevant becanse
of the complex issues that led to our choice of the updating method. It should be emphasized
that the updating method can be less expensive than the combination of the standard method
with the special formation of @, depending on the number of lincar rows. (For detailed operation
connts, sce Gill et al., 1985b.)

5. The initial projected Hessian for indefinite quadratic programs

Our quadratic programming algorithin does not require H to be positive definite, and hence must
allow fo possible indefiniteness and singularity of the projected Hessian in the QP phase. (The
quadratic programming subproblems in an SQI* method may be indefinite when exact sccond
dertvatives are nsed to define the Hessian.) The treatment of indefiniteness depends critically
on the result that, if the initial projected Hessian is positive definite, the projected Hessian can
thereafter become indetinite only when a constraint is deleted from the working set (sce Gill
and Murray, 1978). This property implies that indefiniteness can be controlled explicitly, and
permits a nmmnerically stable Cholesky factorization to be used in solving (6) for p,. even when
the projected Hesstan is indefinite. (For details, see Gill and Murray, 1978, and Gill et al., 1985a.)

In an tmplementation, the initialization procedure must therefore determine a positive-definite
projected Hessian, How can this be achieved most effectively? We consider several strategies for
mtializing the projected Hessian. all of which are based on the observation that the projected
Hessiau matrix will be positive definite if enongh constraints are included in the initial working sot.
(The null matrix is positive definite by definition, corresponding to the case when € contains ng,
constraints.) This snggests somchow adding constraints to the working set to make the projected
Hessian positive definite.

The first strategy deals with indefiniteness through the initialization of the feasibility phase.
The initial working set ju the phase-1 procedure ix constructed to contain ny,, constraints (i.c.,
to define a vertex) by angmenting the “natural” working set (the constraints exactly or nearly
satisfied at the starting point) with a snitable number of “temporary™ bounds, cach of which has
the effeet of temporarily lixing a variable at its current value. Since the phase-1 procedure is
cqmvalent to the simplex method af started at a vertex, the linal working set of the feasibility
phiase will alko be a vertex. Henee, the initial Z of the QI phase will be nall, and the projected
Hesstan will be (trivially) positive definite.

A second option ix to carry out a phase-1 procedure that does not require ereation of a vertex,
and to form the projected Hessian as soon as a feasible point is found, using the final Z of the
feasibility phase. If indeliniteness is deteeted while performing the Cholesky factorization of the
projected Hessian, the current point can be made into a “vertex”™ by adding temporary bounds
as deseribed above, along with updating the TQ factorization,

7

With cither of these techniques. the working set for the imtial quadratic progranuning itera-
tion is given by the square matrix
C
C =) , (10)

E

where E includes rows of the identity matrix corresponding to the temporary bounds. In subse-
quent iterations, a temporary bound is treated as a standard constraint until it is deleted from
the working set. i which case it will never be added again.

Becanse there seemed to be no absolute theoretical grounds for choosing between the above
approaches. onr nitial implementation of the quadratic programming algorithm used the first
strategy, for two reasons. When computing the TQ factorization from scratch, adding bounds is

free” . and the size of the tirst TQ factorization that must be computed deereases as more bounds
arc inchuded in the initial working set (for detailed analysis of the operations required, sce Gill et
al.. 19814¢): comnputing the mntial TQ factorization of phase | is cheaper with the first strategy.
urthermore. the second approach has the disadvantage that all the work of the initial Cholesky
factorization in the QP phase might be wasted, depending on the (unknown) probability that tha
projected Hesstan is positive detinite at the tirst feasible point.

The resulting implementation of the intialization performed exactly as intended. /VeT, a
close analysis of the compntation associated with cacly quadratic programming subprobiem within
an SQP method revealed that the ereation of a temporary vertex at the beginning of phasc t 3
ess than =atisfactory. To sce why, assume that the initial projected Hessian is positive dehnite.
In this caxe. cach of the temporary bounds must be deleted in turn. followed by minimization
of the quadratic function within a subspace of increased dimension; the effect of these moves
i plicitly to compute the Cholesky factor of the projected Hessian by rows. In the extreme
vase of a quadratic program with an unconstrained solution. the work required to optimize the
quadratiec fuuction on w temporary manifolds 1s more than twice the work required to compute
the nox n Cholesky factor directly.

Although one might argue that a suceessful algorithm shonld not be distorted to cater for
this special case. further examination reveaded that inefliciency would be the rule rather than
the exception. Az an SQP miethod proceeds, the active sets of QI subproblems i later major
iterations become the siune the set of constraints active ad the solution of the original nonlinear
problemn (=ee Robinzon, 1971, for a proof). Therefore, when solving the sequence of quadratic
programs that arise within an SQU method, there 15 ahigh probability that the active set from one
subproblem ix also the correet active set for the next, In this context, the initial projected Hessian
i< likely 1o be positive definite, and ereating the temporary vertex is unnecessary. When the initial
working set happens to be optimal, the process of ereating and then eliminating the temporary
bounds requires approximately twice the work that wonld be reguired to compute the Cholesky
factor direetly, Furthermore, computing astaaller initial 7Q factorization with temporary bounds
does not Tead to an overall <aving of work, <ince the factorization must eventually be updated to
vetlect the defetion of the unneeesszary hounds.

Caverr this observation. o inght appear that the second <tratery mentioned above wonld
be revived Howevers the following. even better: stratepy was then developed. Rather than
addme bonnd constriunts to the working set to create a temporary vertex, the new strategy
adds as many general constrinnts as necessary to ensure i posive-detinite projected Hessian, but
reguires no further work fo npdate the TQ factorization or to compute the projected Hessian, The
computation procecds as follow=. At the beenmma of the QI phase, the working set ¢ and its TQ
factorization (3) are available. The watrix Z7HZ 12 formed. and the Cholesky procedure with
symimctric mterchanges i< itiated. Reeall that the Cholesky procedure withont interchanges

8

DI DR IS AP P YA WAL LS DN - L T R T

p——

will break down if the matrix i~ not positive definite. However, by performing interchanges (such
that the colmnn with largest positive diagonal element is processed next at cach step), we can
wdentify the largest possible positive-detinite prineipal minor.

In aleebraie term=. assume that o permutation matrix P has been chosen so that the upper
left submatrix of PTZTHZP is positive detinite. In effect, the columns of Z1 are partitioned as
AP - (Zy Za). sach that ZTHZ, is positive definite, i.e.,

2fHz, = RTR,.

A working set for which Zy defines the null space can be obtained by including the rows of ZF as
temporary setneral constraints, After 2 ix determined (by the Cholesky procedure), the columns
of Z are renrdered (e Z s replaced by Z 1) note that the properties of Z as a basis for the null
space of (" are nnadfected by its colmn ordering. The minimization of the guadratic function
then proceeds within the subspace defined by 7.

We disciss hiere only the case when @ is orthogonal. (Tor details about the case when @ is a
product of stabilized clementary transforinations, see Gill et al.. 1985a.) In contrast to (10), the
temporarily angmented working set is given by

<o that pwill satisfy Cp = 0 and ZJp = 0. By definition of the TQ factorization. C automatically
<atisties the following:

(T'Q‘<ZC>QT<C>(Z, Zy Y)=(0 T),

o N
2 Z2

- (0 T)
T == y
I 0

atdd henee the TQ factorization of {11) is free.

where

The implementation of this procedure involves several subtle points. The matrix Zy need
not he kept tixed at it qnitial valne, since the role of the extra constraini= is purely to define an
appropriate il =pace. the T'Q factorizidion can therefore be updated in the normal fashion as
ieaterations of the quadratie prosrunming inethod proceed. No work is required to “delete™ the
temporary constraints associated with 7, when Zg 00 sinee this simply involves repartitioning
€ When decidhing whnel constraint to delete, the mltiplier vector associated with the rows of
Z1 s wiven by ZTg. and the amltipliors corresponding to the rows of the “true” working set
are the Jeast-squares nnltipliers that would be obtained if the temporary constraints were not
present {see Gall of al. o 1985a).

Athonale one et clann that the final method conld Lave been developed independently
ol cny ~oltwares we helieve That s anhkely that adl the ramifications of cach choice conld have
been [ully nuderstood without carctul nmplementation and detailed a posteriori analysis of the
compnutation,

6. Representation of the Hedsian

Section 4 has deseribed the cimees i representation of a factorization of the working set in onr
quadratie programtnng method becanse of its intended use within an SQPP method. We now

9

ashaibed

.. J .

DI, s e (W

[

turn to an even more specialized question: the representation of the Hessian matrix in a quasi-
Newton SQP method. te.. one in which H is a positivé-definite approximation to the Hessian of
the Lagrangian function that is modified by a low-rank change between subproblems.

In all the quadratic programming methods discussed thus far, the Cholesky factorization
of the initial projected Hessian is computed from seratch at the beginning of the QP phase.
Althongh this procedure is perfeetly satisfactory for a single quadratic program. it has certain

disadvantages in a quasi-Newton SQP method. In particular. when applied to a problem with no
constraints or only linear constraints. such a method is much less efficient than standard quasi-
Newton methods for these problems. in which the Hessian approximation is updated between
iterations. The question thercefore arises: can an SQP method maintain an efficient treatment of
nonlinear constraints. yet remain competitive with unconstraiued or lincarly constrained quasi-
Newton methods if constraint nonlinearities are not present?

Such efficiency can be guaranteed if an algorithm satisfies a specific criterion: when the
working sct includes m o nonlincar rows, the inifialization of 7', ¢ and 2, should require O (m','f, +
mi,n“() operations. This criterion is not satisfied by the hot-start option described in Section
4. since changes in Z mean that both ZTHZ and R, must be computed from seratch. Our
approach involves recurring R, the Cholesky factor of the transformed Hessian approximation
QTHQ (= H,) in both the major and minor iterations. (The form (4) of @ implies that the
matrix R, needed to compute the scarch direetion is simply the upper left corner of R,,.)

To illustrate how the method works, consider the case when the working set at a given
iteration coutains m, lincar rows and a single nonlincar row. Assume that, on completion of the
QP subproblem at the point x. R, is available. As indicated by (8) (9). the effect of replacing
the last row of the working sct is to post-multiply ¢ (and therefore R,) by a matrix of rank one.
Since Q@ = QQ, where Q = 1 -- (1/8)uuT, we have

< 1
R,Q=R, =R, - [—jRQuuT. (12)

The new Cholesky factor Ry, is theu found by constracting an orthogonal matrix P that restores
upper-triangular form to 24, i.c.,

R, = PR,.

A suitable matrix P can be constructed from two sweeps of plane rotations; for more details,
see Gill of al. (1974). In generall if the working set contains my nonlincar rows, my rank-one
updates must be applied to obtain Rg.

Given this procedure for npdating R, we now show how to recur the transformed gradient
4. which changes in two different situations. First, as constraints enter or leave the working
set. the plane rotations used to update @ can =simply be applied to g,. The second change in qq
occurs when pis replaced by p o= p - adp. where the search direction &p s defined as

6
= Zop, = () (](;,) . (13)

Let ¢, denote the transformed gradient at p. It follows from (13) and the definitions of ¢ and Rq
that

Go = QTe 4+ QTH (p + adp)
= QT (e v Hp) + aQTHE

10

AN M S bas Avas ayee aven g G o -—y DL an b A A i Y - ot T Pdi it et It St e 0t e A T St

=qo + aQTHQ (6’;’)

o vandn, (7).

which shows that H is not required to update qq.

In order to avoid access to H in the quasi-Newton update between subproblems, R, can
be updated directly. In this sitnation.) remains unchanged, and H undergoes a rank-two
modification. The BEGS update (7) of I leads to the following change in Hg:

1 T 1 T
He=Hg - qusosoHa + y_g'g;yoyo’ (14)

where ¥, = QT(de — 9¢), 3¢ = QT(Z —) and g, denotes the gradient of the Lagrangian function.
This update may be expressed as a rank-one update to Rg (sce Dennis and Schnabel, 1981). Let
o and v denote the scalars (sEIIQsQ)% and (yz;so)% respectively. The updated matrix (14) may
then be written as H, = flgflq, where

- 1 1 1
Ry = Ry + vwT, ith v=—Rg89, W= —yq— —Hgs,.
Q q@ TVW w1 o tadae ,7'.‘10 o 1edq

Again. the matrix fEQ may be restored to upper-triangular form by two sweeps of plane rotations.

It should be emphasized that these changes in the representation of the projected Hessian
imply that the matrix R, must be updated during the feasibility phase as well as the QP phase.
The SQP method is also altered in a fundamental way. Now, the factor R, is altered by three
sources: changes in the constraint gradients (see (12)); changes in the curvature of the Lagrangian
function (the quasi-Newton updalte); and, finally, changes in the prediction of the active set.

Several interesting rescareh issues have resulted from these changes in the SQP method. If
the correet g-superlinear convergence rate is to bhe achieved at the solution. it is necessary to
show that small changes in the variables lead to small changes in the matrix R, (for details of
the proof, sce Gill of al., 19856). Similarly, certain choices of least-squares multiplier estimates
Jead to methods similar to projected quasi-Newton methods (see, ¢.g., Murray and Wright, 1978;
Coleman and Conn, 1982; Gabay. 1982; and Nocedal and Overton, 1983; Byrd and Schnabel,
1984). In the next section, we shall discuss a class of new methods with a more specialized
treatment of linear constraints.

7. A more specialized treatment of lincar constraints

The ability to updafe an approximation to the Hessian of the Lagrangian function as cach new
nonlinear row is factorized leads to a class of methods with separate active-set strategies for the
lincar and nonlincar constraints. Instead of using the quadralic programming subproblem to
define the complete working set, the *active”™ linear constraints and bounds are determined in the
major iteration by an active-set strategy typical in methods for lincarly constrained optimization
(see Gill and Murray, 1974; Gill, Murray and Wright, 1981). With thisx approach, the lincar
rows never need to be refactorized even during carly major iterations, before the active lincar
constraints have been determined.

11

At et o}

A

v ¥

RPL. T wwe)

‘aladSR A aTkoa A e JERAe

CRr g Aa R §

T

Can e o o o

R . . . c e . - et .
. . - - . . £y . - - ~ v L M . . * .
PSP & V. VW S S ST S AL AR T . S, SUT S VLS L Y R R S T Y DY P S S TN

In such a method, an initial point is found that is feasible with respect to the linear constraints
and bounds (sce Section 3). Within cach major iteration, a working sct of bounds and linear
constraints isx defined in the usual way. Let) denote the submatrix of general lincar constraints
1 the working set corresponding to the free variables, with Z, the corresponding basis for the
null space. The scarch direction is then determined from the modified quadratic programming
subproblem

minimize ¢Tp + 1pTHp
p
subject to < Ayp <,
C.p=0,

where A, denotes the columns of the Jacobian of nonlinear constraints correspouding to the free
variables.

During the major iterations. the TQ factorization of () is recurred as linear constraints enter
and leave the working set. These changes are reflected in the Cholesky factor R, of Z,'{‘HZL,
and are identical to the npdates that oceur in an active-set method for lincarly constrained
mininization ie.. R, grows by a row and column when a constraint leaves the working set,
I, shrink- by a row and colnnmm when o constraint enters the working set. Before solving the
QP subproblem. cach nonlinear row 1= added to the overall working set| leading to updates to
the TQ factorization and to R, asin (12). (The matrix If, required to compute the quadratic
programuung scarch direetion is tn the upper left-hand corner of R,.) On completion of the
subproblen. R, ix updated directly to incorporate new enrvature of the Lagrangian function.

If the working sct contaun= no nonhincar constraints, the method becomes a “projected quasi-
Newton method”™ (zee Gitl, Muarray and Wright, 1981). In general, the sequence of iterates will
differ from that eenerated by the SQI inethod hecause only one Jinear constraint enters or leaves
the working set during cach iagor iteration. Tlhas micethod s likely to be efticient on problems in
which relatively many constraints are active at the solution. If the initial working set of bounds
and lincar constrants s lavec, curvature imformation can be accomulated in R, without the risk
of deleting too many constraunts during a single magor iteration, Under these eirenmstances, the
matrix ZTHZ, may be npdated with a positive-delinite gquasi-Newton approximation when the
full Il cannot.

8. Representation of the Hessian in sparse quadratic programs
All the complexitios of nuplementation wentioned carlier are magnified when developing methods
for Lirge-seade optimizatione. To indicate the shift in perspective, we consider an SQP method
for solving nonlincarly constrained problems i which the Hessian of the Lagrangian is sparse
and known exactly. Thas in cach QP subproblem, I is available in some form that allows the
quadratic abjective and its gradient g (- Hp o g) to he compated.

Recall that, in the QP phase, the scarch direetion ix taken as Zp,. where p,, satisfies

Z'zp, = -2%. (15)

The first issue in solving (15) iz the representation of Z. Although methods for computing
an orthogonal basis Z for the null space of a sparse matrix have been the subject of much
recent research (see. eog Coleman and Pothen, 1984), they are not practical for sparse quadratic
programs becanse of the need to update 7 at every iteration of the QI* method. Instead, methods
have been developed in which the matrix 7 is not stored explicitly.

12

et e L . c L. . .
. I L . et e T e e e
. LR, C N “ e

3

—_—
»

LB Bt Bai it I a i el A AR A A A0a AR A At M e A ALMR N A LSS A St SR A A AR i R "-T

Assume that the ngq columns of the working set C are ordered so that
c=(B 8§),

where the m x m matrix B is non-singular. (In practice, the columns of B may occur anywhere
in C.) The matrix Z dcfined by .
-B™*§
Z= () (16)

I

provides a basis for the null space of C, and is called the reduced-gradient form of the null
space (sce, e.g., Murtagh and Saunders, 1978). This form is effective for sparse problems because
operations with Z and ZT may be performed using a factorization of the sparse matrix B. Let s
denote n., — m (the number of columns of S). The reduced-gradient form of Z can been used
with great success in quasi-Newton methods for sparse linearly constrained problems in which s
is small, by maintaining a dense Cholesky factorization of a quasi-Newton approximation to the
projected Hessian (scc Murtagh and Saunders, 1978).

In the case of sparse quadratic programining, a factorization of the projected Hessian matrix
ZTH Z is needed to solve (15). In a general dense QP method, the initial projected Hessian would
simply be formed at the start of the QP phase by mmltiplying the explicit matrices Z and H. One
might supposc that this procedure could carry over to the sparse case, assuming that s is small
cnough so that the explicit projected Hessian can be stored. (Note that the projccted Hessian
will generally be dense, even if H and -B arc sparse.)

Unfortunately, even if s is small, forming the explicit initial projected Hessian may involve
a substantial amount of work. When Z is defined by (16), computation of ZTH Z requires the
solution of 2s systems of size m x m. For this reason, if the number of iterations in the QP method
is small, computation of‘the first scarch direction will dominate the time required to solve the
quadratic program. (This situation always applies during the last foew major iterations of an SQI’
method.) To put the relative costs into perspective, note that computation of a single row and
colomm of ZTH Z requires approximately the same amount of work as a single iteration of the
simplex method (i.e.. two lincar systems of order m). If s = 100, forming the initial projected
Hessian would require the equivalent of 100 iterations of the simplex method!

An alternative approach is to use a guasi-Newton method to solve the quadratic program.

§ The required quasi-Newton approximation to ZTH Z is maintained using the change in p and

| q between successive minor iterates. (H s needed only to form Hp, from which ¢ and the QP
- objective function are casily obtained.)

: It may not be obvious why this is an improvement. If the exact projected Hessian is not used,
'Y the resulting search direction is no longer the step to the minimnm of the quadratic function in

T— ' the subspace defined by Z. In effect, the cost of forming the initial projected Iessian scems

merely to have been spread over a number of iterations, sinee at least s iterations should be

. required to produce the “true” projected Iessian. However, in the SQP context, the major gain
a is that the Cholesky factor of the projected Hessian at the solntion of one guadratic program
p

: can be used Lo initiate the solntion of the next. This approach has proved to he very suecessful

in the implementation of an SQP method for solving large-scale problems arising in the optimal
distribution of electrical power (sce Burchett, Happ and Vierath, 1984).

This is another situation in which changes to the initialization procedure ultimately produce
a method which is quite different from the original. During carly iterations, significantly different
working sets are generated by the gquasi-Newton quadratie program because the working set is
® usually altered well before the approximate projected Hessian has any resemblance to the exact
projected Hessian,

13

P—

A BBl Sty Sty Bt et Mar M Sd Sediaboe i Sade St Sest e d Suw e oo lae Aoe Aeb e o

References

5 Biggs, M. C. (1972). *Coustrained minimization using recursive equality quadratic programming”,
- in Numerical Methods for Non-Linear Optimization (F. A. Lootsma, ed.), pp. 411 428,
- Academic Press, Loudon and New York.

) Burchett, R. C.. Happ. H. L. and Vierath. D. R. {1984). Quadratically convergent optimal power
ﬁ flow. presented at the IEEE/PES 1984 Winter Meeting, Dallas, Texas (to appear in IEEE
Transactions on Power Apparatus and Systems).

b..
g Byrd, R. H. and Schnabel R. B. (1984). Continuity of the null space basis and constrained opti-
:\ mization, Report CU-CS-272-84, Department of Computer Science, University of Colorado,
Q Boulder. Colorado.
Cody, W. J. (1974). The construction of numerical subroutine libraries, SIAM Review 16, pp.
36-46.

L- Coleman, T. F. and Conn, A. R. (1982). Nonlincar programming via an exact penalty function,
. Math. Prog. 24, pp. 123 161.

B Coleman, T. F. and Pothen, A. (1984). The sparse null space basis problem, Report 84-598,
t. Department of Computer Sceience, Cornell University, Ithaca, New York.

Cowell, W. R. (ed.) (1983). Sources and Development of Mathematical Software, Prentice-Hall,
Englewood Cliffs, New Jersey.

Dennis, J. E.. Jr. and Schnabel. R. E. (1981). “A new derivation of synnmetric positive definite
secant updates™, Nonlincar Programming 4 (O. L. Mangasarian, R. R. Meyer and S, M.
Robiuxon, eds.), pp. 167 199, Academic Press, London and New York.

Dennis, J. E., Jr. and Schnabel, R, B. (1983). Numerical Mcethods for Unconstrained Optimization
and Nonlincar Equations. Prentice-Hall, Ine., Englewood Cliffs, New Jersey.

Gabay, D. (1982). Reduced quasi-Newton methods with feasibility improvement for nonlincarly
constrained optimization. Math. Prog. Study 16, pp. 18-44. :

HIL P I Golub, G HL Murray, W.oand Sannders, Mo AL (1974). Methods for modifying matrix
factorizations, Mathcmatics of Computation 28, pp. 505 535.

Gill, . B and Murray, W. (1974). *Quasi-Newton met hods for linearly constrained optimization”,
in Numerical Methods for Constrained Optimization (P. E. Gill and W. Murray, cds.), pp.
67 92. Academic Press, London aud New York.

ML POE. and Murray. W. (1978). Numerically stable methods for quadratic programming, Math.
Prog. 14, pp. 349 372.

Gill, . E.. Murray. W.. Picken, 8. M. and Wright. M. I (1979). The design and stroacture of a
Fortran prograsp library for optimization, ACM ‘Ivansactions on Mathematical Software 5,
pp. 259 283. ‘

Gill, P. E.. Murray. W., Saunders, M. A, and Wright, M."H. (1984a). User's guide for QI'SOL
(Version 3.2): a Fortran package for guadratic programming, Report SOL 84-6, Department
of Operations Rescarch, Stanford University, California.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. I1. (1984h). Uscr's guide for NPSOL
(Version 2.1): a Fortran package for nonlinear programming, Report SOL 84-7, Departinent
of Operations Rescarcly, Stanford University, California.

14

L g

B RATRA .

. Priar, .. VW T reee—r v A YA s v Yl T ———y— yevov T, gy 1

5 :

| J

4 !

: R

|

: Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1984¢). Procedures for optimization R
t-_ problems with a mixture of bounds and general linear constraints, ACM Transactions on

Mathematical Software 10, pp. 282-298.

sl P E. Murray, W., Saunders, M. A. and Wright, M. H. (1985a). The design and implementa-
tion of a quadratic programming algorithm, to appear, Department of Operations Rescarch,

Stanford University, California.

g

L S R

Gill, P. E., Murray, W., Saunders, M. A., Stewart, G. W. and Wright, M. . (1985b). Propertics
of a representation of a basis for the null space, Report SOL 85-1, Departinent of Operations
Rescarch, Stanford University, California.
sill, P E., Murray, W. and Wright, M. H. (1981). Practical Optimization, Academic Press, .

Py

London and New York.
Han, S.-P. (1976). Superlincarly convergent variable metric algorithms for general nonlincar
programiming problems, Math. Prog. 11, pp. 263-282.

Murray. W. and Wright, M. H. (1978). Methods for nonlinearly constrained optimization based
on the trajectories of penalty and barrier functions, Report SOL 78 23, Department of
Operations Research, Stanford University.

Murtagh, B. A. and Saunders, M. A. (1978). Large-scale lincarly constrained optimization, Math. *
]

Pl 4 o .

Prog. 14, pp. 41-72.

Nocedal, J. and Overton. M. (1983). Projected Hessian updating algorithms for nonlinearly con-
strained optimization, Report 95, Department of Computer Science, Courant Institute of
Mathematical Seiences, New York University, New York.

Powell, M. J. D. (1977). A fast algorithm for noulincarly constrained optimization calculations,
Report DAMTDP 77/NA 2, University of Cambridge, England.

Powell. M. J. D. (1983). “Variable metric methods for constrained optimization”, in Mathe-

matical Programming: The State of the Art, (A. Bachem, M. Grotschel and B. Korte, cds.),
pp. 288 311, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo.

i AW

Robinson, 8. M. (1974). Perturbed Kuhn-Tucker points and rates of convergence for a class of

.) . y
; nonlinear programming algorithwms, Math. Prog. 7, pp- 1 16.
) Stewart, G. W. (1973). Introduction to matrix computations, Academic Press, London and New ﬂ
: York. -4
. 4
[Wilson, R. B. (1963). A Simplicial Algorithm for Concave Programming, Ph.D. Thesis, Harvard 1
t . University. b

Calli a4

P P
P

15

: . . B I - B - . - T e . . S
. - - . B g - - . - o e . T o * ‘ .
LY [P — TP VU P USRI U W W L, S A S U

T Pttt e s et Sk Al Rt et Y bt S M S A T Sl A S T i) APl "l M R RN i e AR S At i SR S

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE o EAD INSTRUCTIONS -

1. REPORT NUMBER 2. GovY Accutﬁu RECIPIENT'S CATALOG NUMBER
ARo 21§92.4-m4A v '&5 NA

4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED

Technical Report

SOFTWARE AND ITS RELATIONSHIP TO METHODS

6. PERFORMING ORG. REPORYT NUMBER

7. AUTHOR(s) 8. CONTRACY OR GRANT NUMBER(s)

B .. sl NP e s s RN ., RS L-“A‘_J

Philip E. Gill, Walter Murray, Michael A. NO0O14-75-C-0267
Saunders and Margaret H. Wright DAAG29-84-K-0156
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. 2:82".‘%‘&‘55:‘:‘&'&?:‘5' TASK
Department of Operations Research - SOL
Stanford University NR-047-143
Stanford, CA 94305
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research - Dept. of the Navy November 1984
800 N. Quincy Street 3. NUMBER OF PAGES
Arlington, VA 22217 15
15, SECURITY CLASS. (of this report)
U.S. Army Research Office NC IF
P.0O. Box 12211 UNCLASSIFIED
Research Triangle Park, NC 27709 [T5a. ggséestngncnnoulooumcnomc

e
16. DISTRIBUTION STATEMENT (of thlie Report)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES
The view, opinfons, and/or findings contained in this report are those of
the author(s) and should not be construed as an official Department of the
Army position, policy, or decision, unless so designated by other documen-
tation.

19. XEY WORDS (Continue on reverse eide if necessary and Identity by bock ber)

, /J PR P TP 2 77, I 0 R Es PR
Numerical Software
Numerical Analysis
Optimization
/‘J ,.//’. - . < _
20. ABSTRACT (Continue on reverse aide i y and identify by block ber)

- = One view of numerical software is that it is simply a computer implemen-
tation of a known method. Implicit in this view ‘s the assumption that
the flow of information is in one direction only. However, developments
{n methods and software are intimately related, and neither is complete if
considered in isolation. 1In this paper, we i{llustrate how the development
of numerical software has influenced our research in optimization methods.

1
)
]
:
1
’

,/“ i ls - ,'v'/~ 1

.
< L

DD . an'ss 1473 €oimion oF 1 NOV 6813 OesoLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bnteved) W
1

. . - e, L . <. - T N e RIS . . “ B -
L 3 R - . e . o e - P N I L L T T T T A T N . s

-'I'.'.' v '... i . PR T it B W L T W TR WL P TP o T P YTy T R P T e TV~ w~w
. . - T e, - Pt R < B S M e o & - ~

W, TN R —_

nAE——

4-85

